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Abstract

The assignment of the1H spectrum of a protein or a polypeptide is the prerequisite for advanced NMR studies. We
present here an assignment tool based on the artificial neural network technology, which determines the type of the
amino acid from the chemical shift values observed in the1H spectrum. Two artificial neural networks have been
trained and extensively tested against a non-redundant subset of the BMRB chemical shift data bank [Seavey, B.R.
et al. (1991)J. Biomol. NMR, 1, 217–236]. The most promising of the two accomplishes the analysis in two steps,
grouping related amino acids together. It presents a mean rate of success above 80% on the test set. The second
network tested separates down to the single amino acid; it presents a mean rate of success of 63%. This tool has
been used to assist the manual assignment of peptides and proteins and can also be used as a block in an automated
approach to assignment. The program has been called RESCUE and is made publicly available at the following
URL: http://www.infobiosud.univ-montp1.fr/rescue.

Introduction

High quality NMR spectra are relatively easy to obtain
from a suitable protein or peptide sample. The spectra
can be directly used to investigate for possible ligand
binding, to measure pKa titrations, to investigate the
oligomerization state or other physical studies.

However, for a deeper study, and notably if a struc-
tural study is to be undertaken, assignment of the1H
spectrum cannot be avoided. Carrying out this as-
signment is usually a long and tedious process, and
the difficulty and the length of this operation is cer-
tainly what limits the rate at which NMR studies are
completed. Thus, any technique which could help in
speeding up this procedure is certainly much needed.

Assignment is usually performed from a set of
2D and 3D J-correlated spectra, by considering the
logical constraints introduced in the spin systems by
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the observation of cross-correlations, and by match-
ing these constraints with the skeleton of the different
side-chains of the polypeptide.

The information obtained from the J-correlated
spectra is not sufficient, and NOE-correlated spec-
tra must also be considered for the determination of
the sequential linking of the amino acids. This se-
quential approach, first proposed by Wüthrich and
co-workers (Wüthrich, 1986) is still used with great
success. Since then, the technique has been extended
with the use of15N labelling in the case of larger sys-
tems. The determination of the spin-system types is
central in this assignment technique and depends to a
large extent on the skill of the assignor to recognize
spin-systems in the J-correlated spectra. This proce-
dure is impeded by three main difficulties: (i) chemical
shift values, strongly influenced by the environment
can rarely be used; (ii) spin-system aliasing, which
arises from the fact that different amino acids may
have exactly the same spin-system topology (the AMX
and the AMPTX families), or very closely related
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spin-systems (I and L); (iii) the disappearance of some
signals, too weak or hidden by others.

13C and15N labelling is currently used as a stan-
dard procedure to circumvent these difficulties, as
this technique permits a rapid and unambiguous as-
signment of the polypeptide backbone. However, this
technique cannot be considered in the case of extracted
proteins and the associated price tag rules it out for
small proteins and peptides.

In all these procedures, the actual value of the1H
chemical shift of each observed spin is rarely used, as
it is usually considered that the environment of each
residue has such a strong and unpredictable impact
on the line positions that no reliable information can
be extracted from it. Rather, chemical shifts are used
in latter stages of the study, for predicting the sec-
ondary structure (Wishart et al., 1991; Wishart and
Sykes, 1994) or in the process of structure refinement
(Kuszewski et al., 1995).

The purpose of this work is to investigate whether
the chemical shift information can be used directly to
assist the amino acid determination, and to implement
a program realizing this operation.

The artificial neural network software technology
appears perfectly appropriate in our case. The basic
principle is to build a function, taking the raw experi-
mental data as input (in our case chemical shifts), and
yielding the assignment as its output (here the type of
the amino acid). This function is designed as a generic
parameterized non-linear function. The parameters of
this function are optimized against a large body of ex-
amples for which the answers are already known. This
optimization is a lengthy process, performed by iter-
atively minimizing the differences between the actual
output of the function being optimized and the ideal
output profile. In the literature, this optimization step
is usually called the training process. In a second step,
the trained artificial neural network can be exploited,
first on independent test data in order to assess the
quality of the program, and finally on real cases.

The development of a good artificial neural net-
work thus requires the definition of an optimum func-
tion design and the availability of a large database
of representative examples, which will be split into a
training and a test set.

The use of artificial neural networks based on
chemical shift information, as an aid for protein NMR
studies, has already been demonstrated, either for the
study of homologous proteins (Hare and Prestegard,
1994), or by combining assignment and secondary
structure (Choy et al., 1997; Huang et al., 1997).

The present work differs from these pioneer studies
in several aspects. First, we chose to use the large
chemical shift database collected in the BioMagRes-
Bank database (Seavey et al., 1991). We selected from
this database a representative subset of proteins which
was used to perform the optimization of the artifi-
cial neural network. This approach permits to build a
general purpose artificial neural network while the pre-
vious approaches, built on more specialized training
sets, had less generality. Secondly, the usual artificial
neural network design has been modified by adding a
fuzzy logic layer on the input, thus obtaining a higher
rate of success in the analysis process. Finally, because
of its general use, this tool has been made publicly
available under the name RESCUE on our web server
at http://www.infobiosud.univ-montp1.fr/rescue.

Materials and methods

Database
The artificial neural network used in this work was
trained on a set of chemical shifts extracted from
the BioMagResBank (BMRB) database (Seavey et al.,
1991). The BMRB database contains NMR chemical
shifts derived from proteins and peptides, reference
data, and amino acid information, along with data de-
scribing the source of the protein and the conditions
used to study the protein. In constructing the database,
proteins and larger peptides have been given priority.

The entire database as of July 1996 was down-
loaded as a flat file and used in this state for the present
study. At this date, the BMRB contained over 100 000
unique1H chemical shifts, measured for over 1169
peptides or proteins.1H chemical shifts were extracted
from the BMRB and used directly. In this database1H
chemical shifts are referenced to TSP or DSS, and no
corrections for reference, pH, or temperature bias were
applied (Wishart et al., 1995b).

For each amino acid, only the1H spins which make
a clear TOCSY correlation with the Hα proton were
considered for the study. This excludes the aromatic
protons of aromatic residues, the methyl group of me-
thionine, the HN terminal protons of basic residues as
well as all the labile protons of alcohols and acids.

A first selection was made out of the BMRB by
removing all protein entries with paramagnetic centre,
and by considering only amino acids with a minimum
number of assigned resonances. This minimum num-
ber was set to 2 for G and A, 3 for T and AMX
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residues, 4 for E, Q, M and V, 6 for the long chain
residues (L, I, P) and 7 for K and R.

A final selection was then made by removing
proteins not fully assigned (i.e. with less than 4 as-
signments per residue in average). Then all redundant
protein entries were removed, in order to create a set
of proteins which spans in an unbiased manner all
the proteins present in the database and which is, at
the same time, representative of the various chemi-
cal shifts found. This final set contains 142 different
proteins and was used as a training set for building
the different artificial neural networks, and will be re-
ferred to as the training set in this paper. The names of
the selected files are available as supplementary mater-
ial at the following URL: http://www.infobiosud.univ-
montp1.fr/rescue/file_training.html.

The first selection was used to carry out the test
procedures of the different artificial neural networks
studied, with the additional condition that entries used
for training were not used in the test phase. Tests were
made on a total of 8033 assigned amino acid entries
spanning 786 different proteins.

Neural network
In this study two different approaches have been tried.
A first artificial neural network setup (called NN1 in
the following) was designed to discriminate the 20
different amino acids. With this approach some sys-
tematic errors were observed for closely related amino
acids such as I and L; M, E, and Q; or D and N.
Another network was designed, where related amino
acids are grouped, and predicted as a group in a first
stage. A series of specialized networks were then
trained to separate individual amino acids among the
predicted groups of the first stage. The groups are pre-
sented in Table 1. This set of networks (first stage and
second stage) will be called NN2 in the following.

All the artificial neural networks used in this work
consist of a classical perceptron design (Rosenblatt,
1957, 1958; Rumelhart et al., 1986) in which the input
data (chemical shifts) are presented to the input layer,
and results (the amino acid types) are obtained from
the output layer. The topology retained for this work is
a classical 3-layer network with one hidden layer and
simple forward connections with no data retroconnec-
tion. The schematic of the computation is shown in
Figure 1. Each neuronn performs a weighted sum of
its inputsIni , and computes its output as a function of
this sum.

xn =
∑
i

Wn
i I

n
i (1)

Table 1. Amino acid grouping used for
the artificial neural network NN2

First stage Second stage

IL I

L

A A

G G

P P

T T

V V

KR K

R

AMX (FYWHDNC) FYWHC

DN

AMPTX (EQM) EQ

M

S S

The application functions used for the connections
in the network are the following:

f (xn) = 2

1+ exp(−2(xn + Bn)) − 1 (2)

and

g(xn) = max(0,
1

2
(xn + 1)) iff xn < 0

= 1

1+ exp(−(xn + Bn)) iff xn ≥ 0
(3)

The functionf (x) is used for the internal connec-
tions, andg(x) is used for the output layer. These
functions were chosen among other functions by trial
and error as giving the best results. The parametersWn

i

(weight) andBn (bias) are adapted for each connection
by the training process (see below).

The number of chemical shifts to be entered is dif-
ferent for each amino acid, and may even vary for a
given amino acid, because of the possibility of missing
assignments. This cannot be handled easily by a per-
ceptron design, so we used an additional fuzzy logic
layer (Zadeh, 1988) in order to code on a constant
number of inputs the set of chemical shifts to analyse.
This layer consists of a grid on the chemical shift scale
on which the position of each spectral line is coded.
In order to obtain a resolution along the chemical shift
finer than the grid spacing, a technique close to graphic
antialiasing was chosen, in which the intensity of a
grid entry is proportional to the distance of the spectral
line to the middle of the division (see Figure 1).
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Figure 1. Outline of the structure of the artificial neural network used in this work presented here with 6 input neurons, 2 hidden neurons and
3 output neurons. (a) represents the NMR spectrum to be analysed, consisting of 3 different lines; (b) describes the fuzzy logic layer coding
the chemical shift into the input layer; (c) the actual values used to feed the input layer; (d) the arithmetic operations performed by the neural
network, where

∑
represents the summation operation,f() andg() are the non-linear transfer functions, andWandB are the weights and bias

optimized during the training step.

We thus define a fuzzy logic grid as consisting of n
entries, located at the positionsδk regularly sampling
the chemical shift axis with a spacing of1δ. An output
valueyk is computed for each grid position. The fol-
lowing equation is used to compute theyk values from
the chemical shift valuesxl present in the spectrum to
be coded:

yk =
∑
l

(
max

(
1− ‖δk − xl‖

1δ
,0

))
(4)

The nyk values are then used as input of the input
layer of the artificial neural network. The intensities
of the lines are ignored. The grid used in this study
collapses the spectral data into 32 input neurons, span-
ning the−2 ppm to +14 ppm range in intervals of
0.5 ppm; chemical shifts outside this range are dis-
carded. With this coding, the positions of a few lines
can be coded exactly on the grid, and the coding be-
comes blurrier in the case of a more densely packed
spectrum. No provisions are made for overlapping or
degenerate resonances.

The output layer consists of one neuron per pos-
sible output value. The ideal network should produce
a 1.0 on the output corresponding to the true answer,
and 0.0 on all the other outputs.

Training (optimization) of all the parameters of the
network (weights and bias for each neuron input) was

performed by minimizing the Euclidean distance (χ2)
between the actual output of the trained network and
the ideal output. A gradient back propagation algo-
rithm with momentum and adaptive learning rate was
used (Rumelhart and McClelland, 1986).

Training of NN1 was realized on the training set
as described above; 20 representatives of each amino
acid type were randomly chosen from all the proteins
in this set, thus realizing a training on 400 different
residues. For the training of the artificial neural net-
works used in NN2, the number of representatives for
each group was increased to 80. In any case, training
was performed for a minimum of 12 500 iterations.

The artificial neural network being optimized was
also evaluated against the complete test set presented
above. For each spin system entry in the test set, the
predicted amino acid was compared to the real one,
and the ratio of correct answers was used as an overall
measure of the rate of success. This rate of success
was monitored during the whole training phase, and
the state corresponding to the best rate of success was
always selected, even if it did not correspond to the
smallestχ2.

The whole process was first implemented in ver-
sion 5 of the Matlab program (Matlab, 1998) using the
artificial neural network tool box. All data manage-
ment was performed in the perl language. A simple
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version of the final optimized artificial neural networks
has also been written in the perl language in order to
produce a small and stand-alone version of the pro-
gram. It is the perl versions of NN1 and NN2 which
are used in the Internet-based version of the program.
All computations have been carried out on a HP K250
computer.

In normal use, the optimized artificial neural net-
work is presented with a series of chemical shifts ex-
tracted from a given spin-system. The artificial neural
network output consists of a vectorOi with a value
for each targeted amino acid. The largest value in the
output vector (Omax) is considered to be the predicted
amino acid.

The difference between the actual output vector
and the ideal vector for this targetI ti is used to evaluate
the reliability of the answer. The program computes
the quantitypt (O):

pt (O) = exp(−
∑
i

(Oi − I ti )2
σti

)× Rt (5)

whereσti is the variance of theith element of the output
vector, evaluated during the test phase from the neural
network output for all the amino acids of typet; andRt

is the rate of success observed for this amino acid, as
given in Tables 2 and 3. A final coherence test is also
added at the end of the processing, verifying that the
number of spins of the predicted amino acid is com-
patible with the number of signals on the input. The
output vector issued to the user, as well as the quantity
p(O), is expressed in percents.

Results

database analysis
Chemical shift statistics for each resonance of the
amino acids were first computed from the database
selection. We verified that the mean chemical shift
values are very close to the random coil values pre-
viously published (Wüthrich, 1986; Merutka et al.,
1995; Wishart et al., 1995a). On the other hand, the
observed standard deviations around the mean values
are much larger than the variation of this mean value
from one amino acid to another, and are of the order
of 0.4 ppm. This amply confirms the well known fact
that the value of a single chemical shift cannot assess
the amino acid type, except in very special cases. It
could also be observed that aromatic residues present
slightly larger deviations than non-aromatic ones.

Table 2. Results of the optimized artifi-
cial neural network NN1 for the differ-
ent types of residues

Residues Rate of success(%)

All residues 63.5

G 91.2

A 92.2

V 94.5

L 64.9

I 82.7

P 77

T 90.8

K 92.7

R 90.3

E 39.8

Q 51.8

M 50.7

S 89

C 23.7

D 48.3

N 10.4

F 8

Y 0

W 60

H 1.9

Table 3. Result of the optimized artificial neural network NN2 for the
different types of residues

First stage Second stage

Group name Rate of success(%) Group name Rate of success(%)

All residues 91.9 All residues 79.9

I L 93.4 I 74.4

L 70.8

A 94.5

G 94.4

P 96.5

T 90.8

V 93.9

K R 91.7 K 91.1

R 80.5

AMX 89.1 F Y W H C 67.9

D N 59.2

AMPTX 93.5 EQ 71.6

M 67.8

S 88.1
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First design
The artificial neural network with one output for each
of the 20 different amino acids (NN1) is first consid-
ered. To evaluate the possibilities of such a design
and to optimize its efficiency, we varied the size of
the hidden layer and monitored the optimum rate of
success obtained for each network. Figure 2 shows the
variation of different parameters of the fully trained
NN1 obtained upon varying the hidden layer size.

It can be seen thatχ2, the quantity being mini-
mized during the training, decreases with increasing
size of the hidden layer. Larger artificial neural net-
works contain more degrees of freedom, and are thus
more capable of adapting the arbitrary function which
is fitted during the training. However, it can be ob-
served that a betterχ2 does not imply a larger rate of
success, and that the rate of success estimated in the
test phase drops for more than 4 hidden neurons.

This can be explained by the fact that additional
degrees of freedom available in the larger artificial
neural networks are used to fit features in the training
set which are not relevant to the predicting process,
and that the larger artificial neural networks some-
how overfit the available data. This interpretation is
strengthened by the fact that theχ2 computed on the
test set increases for the largest networks.

From this study, we chose to use the geometry with
4 neurons in the hidden layer. The rate of success
of the optimized NN1, as obtained on the test set, is
63.5%. This means that for 63.5% of the residues in
the test set, the correct amino acid is inferred solely
from the set of chemical shifts. The results are detailed
in Table 2 and Figure 3. It can be seen that there is
some departure from the mean rate of success depend-
ing on the amino acid tested. Some amino acids, such
as G, A, V, S, T, R or K are found in 90% or more of
the tested cases. On the other hand, residues such as
C, N, F, Y and H are detected with a rate of success
which is smaller or only marginally larger than the
random value of 5%. From Figure 3 it can be seen that
I and L appear as a pair and are often mistaken for each
other, the group of the AMX or AMPTX spin-systems
are correctly detected as a whole, but not correctly
separated.

Hare and Prestegard (1994), in an analogous study,
proposed to remove the chemical shifts of the HN and
Hα spins from the analysis. Indeed, such spins seem
to mostly bear information on the secondary structure
(Wishart et al., 1991; Merutka et al., 1995). However,
when we tried to build an artificial neural network us-

ing only the side chain spins, the system was found to
be much less efficient.

Second design
The second approach (NN2) with amino acids grouped
in similar classes (Table 1) was then applied. This
grouping is largely designed from the results of the
NN1 study. With this second approach the analysis is
performed in two steps: a first artificial neural network
determines in which group a given spin-system falls,
then if this group consists of more than one amino
acid, a second independent network, specialized on
this group, determines more precisely the amino acid
type. No attempt was made to separate down to a
unique amino acid in each class. The NN2 approach
consists thus of a set of five related artificial neural
networks; one for the first separation step, and one
for each sub-group separation: I-L, K-R, AMX and
AMPTX. The reliability (Equation 5) is computed for
each predictive step, and the user may stop at the first
stage, or decide to use the final prediction. The relia-
bility coefficient returned to the user at the issue of the
second step is the product of the reliability coefficients
of each steps, normalized to the overall rate of success.

In a procedure similar to NN1, the optimum num-
ber of neurons in the hidden layer was determined
for each artificial neural network of the NN2 set. The
network used in the first separation step has 6 hidden
neurons, and the specialized ones have 2 or 3 neurons
in their hidden layer.

The results obtained with this second approach are
given in Table 3. The mean rate of success of the first
stage on the test set is 91.9%, and the cumulated rate
of success of the two-stage analysis is 79.9%.

It can be seen that the global figures obtained with
NN2 are much better than those obtained with NN1.
All the amino acids and groups are predicted with rates
of success higher than 88%, whereas in the previous
approach, two thirds of the residues were below this
threshold. Except for V and S, all the residues which
are handled individually by this second approach are
predicted with an equal or better efficiency than in
NN1.

By grouping together the amino acids that are in-
trinsically difficult to separate, we have eased consid-
erably the determination process of the artificial neural
network. This fact probably fully accounts for the ob-
served gain in rate of success. However, it should be
noted that the inherent complexity of the problem has
not really been solved, but is mostly hidden in the
groups of the final stage.
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Figure 2. The value of theχ2 after optimization (triangles), theχ2 obtained on the test set (circles), and the global rate of success (squares, in
percent) for different sizes of the hidden layer.

Figure 3. Response of the NN1 artificial neural network, as observed on the training set. For each family of amino acids analysed (located on
the left) the number of answers is given graphically: white: less than 5%; light crosshatching: 5 to 30%; medium crosshatching: 30 to 60%;
crossed dark crosshatching: 60-85%; black: more than 85%.
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Finally, it should be noted that the NN2 approach
gives the user a choice between a good separation
and a good confidence with a less precise separation.
This latter analysis can be well suited for automatic
assignment analyses.

Reliability coefficients
One important feature of the program presented here
is that it evaluates the confidence of its answers, using
a reliability coefficient (Equation 5). To check how
this reliability relates with the quality of the answer,
we plot in Figure 4 the rate of correct answers of the
NN2 neural network versus the reliability coefficient.
It can be seen that, as the rejection threshold on the
reliability coefficient is raised from 0 to 90%, the num-
ber of analysed entries is reduced (given here as the
percentage of rejected entries ranging from 0 to 65%)
and at the same time the rate of success on the remain-
ing entries increases substantially. For instance, one
half of the erroneous answers are rejected by select-
ing only the answers with reliability coefficients over
60%, while 75% of the data can still be analysed.

Optimization
Other artificial neural network geometries were also
tested, such as a one-step network predicting on the
final 14 groups presented in Table 1, or a two-stage
network predicting down to the single amino acid.
However, it is the approach presented here which
yielded the best balance between global efficiency and
usefulness.

Proteins present in the BMRB are usually not fully
assigned, and many assigned amino acids are present
with missing chemical shifts. The complete assign-
ment statistics of the training set are given in Table 4. It
appears that the assignment of long-chain amino acids
is slightly less complete than short-chain ones. On the
other hand, no simple correlation appears between the
mean assignment level and the rate of success as pre-
sented in Table 3. Indeed, the mean assignment level
of the BMRB is faithfully reported in the training and
test sets, and the artificial neural networks presented
here are optimized for such a level of missing entries.

However, because a published assignment, as
given in the BMRB, is always more comprehensive
than the level of analysis of an assignment still in
progress, we thought that the level of assignment, as
found in the BMRB, could be too high for every day
practice. We thus trained another set of artificial neural
networks, lowering the gap level needed to accept a
given amino acid in the training set. This new set of

artificial neural networks presents slightly lower rates
of success than the previous set. However, it presents
mixed results on the two real cases presented below,
and its usefulness has yet to be further investigated.

The fuzzy logic layer used as input to the artificial
neural network is certainly important for the quality of
the results presented here, as it permits the formatting
of the input data independently of the number of en-
tered resonances. With this coding, no chemical shift
information is lost as long as all the resonances of the
spin system being considered are separated by more
than the grid spacing. When two resonances closer
than the grid spacing fall in different grid cells or if
resonances become even more clustered, precise in-
formation on the spectral positions is lost, but the
information on the number of observed resonances
always remains.

The grid spacing chosen for this study is 0.5 ppm.
We carried out tests with a grid spacing of 0.25 ppm,
but did not observe significant improvements of the
rate of success; moreover, the impact on the computa-
tion time was very large.

Real cases
Two proteins currently studied in our laboratory were
used to evaluate the behaviour of the artificial neural
network under circumstances close to a real assign-
ment process.

The proteins used for the tests are two small onco-
proteins, involved in rare forms of human leukaemia,
the solution structures of which were recently deter-
mined in our laboratory (Barthe et al., 1997; Yang
et al., 1998).

Both of these proteins present a new folding pat-
tern. The first protein, called P13, contains 116
residues and is mostly inβ-structure, with an orig-
inal eight-strandedβ-barrel fold; the second, called
P8, contains 78 residues and is mostlyα-helical, struc-
tured as three anti-parallel helices, stabilized by three
disulfide bridges. It should be noted that no protein
homologous to any of these two proteins is present in
the BMRB.

The1H NMR spectra of these two proteins are as-
signed at 90.8% and 85.4% of the possible chemical
shifts for P13 and P8, respectively. The chemical shifts
of the two proteins, as available from the assignment
listings, were directly input into the program; the re-
sults are given in Table 5 for the first and second stages
of the NN2 program; with various reliability levels. It
was observed that most of the assignment errors were
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Figure 4. Rate of success (correct answers ratio) of the NN2 neural network (closed squares–left axis) for all the answers over a given reliability
coefficient (abscissa). The percentage of entries below the given reliability is also given (open circles–right axis).

Table 4. Assignment completeness in percent, observed on the training
set. The mean value is given in the case of stereospecific assignments

HN Hα Hβ Hγ Hδ Hε Mean

G 95.65 99.19 98.01

A 95.37 99.75 99.51 98.21

V 92.83 100 100 99.37 98.31

L 93.50 99.00 95.25 91.00 94.50 94.71

I 95.04 100 99.17 91.32a 92.56 95.10

96.28

P 97.25 91.76 87.05 93.72 91.76

T 96.02 99.33 99.33 100 98.67

K 93.22 99.36 92.37 71.82 65.67 64.19 78.07

R 95.39 98.46 94.78 81.59 82.51 88.95

E 92.98 99.69 97.25 85.67 93.09

Q 91.17 99.50 96.07 90.19 93.87

M 84.33 100 93.97 77.70 87.95

S 93.42 98.63 98.63 97.33

C 96.64 97.68 98.19 97.68

D 94.33 99.68 99.68 98.34

N 94.63 97.70 99.42 97.79

F 93.22 99.43 99.43 97.88

Y 93.00 99.00 100 98.00

W 95.31 98.43 96.87 96.87

H 90.64 99.28 99.28 97.12

aHγ methyl.

Table 5. Results of NN2 on the P8 and P13 proteins

Reliability P8 P13

(%) First stage (%) Second stage (%) First stage (%) Second stage (%)

Success Reject Success Reject Success Reject Success Reject

0 88.5 0 82.1 0 81.9 0 63.8 0

10 89.4 2.5 82.4 5.1 88.6 24.1 75.6 25.9

70 87.8 15.4 84.4 42.3 90.6 26.7 83.9 51.7
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found for the residues for which many chemical shifts
were lacking.

Discussion

Two artificial neural network programs are presented
in this manuscript. The first, called NN1, is set up
so as to directly extract the type of the amino acid
under study from the values of the observed1H chem-
ical shifts. This program appears not to be usable as
it presents very high error rates for certain types of
amino acids. The second, called NN2, is very similar
to NN1 except that some grouping has been made in
the possible answers of the program. This different
design permits to present a program which yields the
correct answer in 80% of the tested cases.

Such a rate of success is certainly higher than
the values previously reported in comparable previ-
ous studies (Hare and Prestegard, 1994; Huang et al.,
1997), and should be high enough for this tool to be of
real help during the assignment process.

When looking at Table 5, it can be seen that P8 is
predicted by NN2 with a higher rate of success than
P13 (82% versus 64%). This difference could be ac-
counted for by the fact thatα-helix structures are more
often present in the BMRB database, and consequently
in the training set used here, and thatβ-sheets are less
often present. The mean ratio of correct answers for
these two tests is slightly lower than the mean value
obtained on the test case (80% for NN2), but this is
certainly due to the fact that both P8 (three-helix bun-
dle) and P13 (eight-strandedβ-barrel fold) represent
folding patterns absent in the BMRB.

The reliability coefficient (Equation 5) can be used
to modulate the confidence of the output given by the
program. Figure 4 shows that the number of correct
answers can be increased from 80% to values over
90%, at the cost of rejecting 40% of the analysed spin
systems. The number of wrong answers is strongly re-
duced by the operation. This feature can be of great
help when one searches for a small number of secure
answers, for instance in the case of partial assignment,
or to help an automatic assignment program.

One distinctive characteristic of artificial neural
network studies is that it is possible to design and op-
timize an artificial neural network for a given task, but
it is usually difficult to tell how the produced artificial
neural network actually works, and on which features
it constructs its discrimination.

In our case, much can be said on how this predic-
tion process takes place. It appears that the artificial
neural networks presented here do not work by ex-
tracting some striking and characteristic features of a
given amino acid (special chemical shift, number of
resonances, etc.), but rather, use subtle global corre-
lations between the different chemical shifts entered.
For instance, long-chain amino acids are regularly
recognized given only the HN, Hα and Hβ chemical
shift values; in certain cases wrong glycine predictions
are given for entries with more than 3 chemical shifts,
thus underlining the necessity for the final coherence
test mentioned in the Materials and methods section.

Global correlations between the different chemical
shifts do exist, as it is well known that the secondary
structure of a given amino acid has some known influ-
ence on the mean values of the HN and Hα chemical
shifts. The CSI analysis (Wishart et al., 1991) is indeed
based on such a phenomenon.

This influence of the environment on the chemical
shifts might well be more general, not being restricted
to the secondary structure but also including for in-
stance the type of the preceding and following amino
acids (Wishart et al., 1995a), the global tertiary fold-
ing, the presence of shielding or deshielding aromatic
groups, etc. It might also be more subtle, as the effect
may be a complex and correlated move of all the spec-
tral lines of the studied amino acid. It is possible that
the programs presented here base the discrimination
on the extraction of these subtle and correlated moves
away from the random coil shifts.

The tool presented here is certainly accurate
enough to be used on a regular basis, and it is worth
envisioning now what are the reasons of the errors
which are still observed, and how these errors could
be eventually detected or circumvented. Systematic
errors, such as an amino acid being regularly taken
for another, predominant in the NN1 approach, are
nearly absent in NN2. This is indeed due to the fact
that the inherently difficult cases have been grouped
together, somehow hiding the difficulties in the design
itself. However, prediction rates below 80% are still
observed.

There are many examples in the literature of chem-
ical shifts which are observed to be very far from the
random coil values. These exotic chemical shifts are
usually rationalized by the presence of unusual con-
tacts with ring current-inducing structures of irregular
3D patterns, or of some exotic pKa or chemical activa-
tion. These effects are quite complex and probably not
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easy to analyse during the course of the assignment
itself.

Such exotic chemical shifts are also present in the
training set as well as in the test set, as no special
attention was paid to the value of the chemical shifts
during the selection process (except for the rejection
of the paramagnetic proteins altogether). It is thus ex-
pected that the neural network presented here should
be able to handle outliers without too many errors.
To check more precisely the behaviour of the NN2
neural network, we investigated for each amino acid
type how the NN2 rate of success relates with respect
to the spread in chemical shifts (data not shown).

In all cases it is observed that the rate of success
drops for the extreme outliers (representing a small
percentage of the total database); however, this drop
is more or less pronounced depending on the amino
acid type. Looking to the remaining 90 percent of the
database, two distinct effects can be separated: for
some amino acid types, the rate of success does not de-
pend significantly on the spread of the chemical shifts
from their mean values, this corresponds roughly to
the amino acids with mean rates of success over 90%
(see Table 3) plus the aromatic subset (A, G, T, V, F,
Y, W, and to a lesser extent I, C, P, and H); for the
other amino acids, the quality of the determination is
directly related to the distance of the chemical shifts
from their mean values: the closer to this mean value,
the better the prediction.

It should finally be noted that the level of errors re-
ported for this work is perturbed by the possible errors
in the BMRB itself. There are several reports in the
literature of errors in the NMR analysis due either to
assignment errors (Massefski et al., 1990; Bontems
et al., 1991) or even to primary structure errors (Foray
et al., 1993; Nishio et al., 1998), in addition to the
possible typing errors in the data entry of the BMRB
entries.

The tool presented here can certainly be used suc-
cessfully in several typical situations. First, it can
serve as an aid during manual inspection and assign-
ment of protein and peptide spectra. As such, it has
been inserted as a tool in our assignment program
(Malliavin et al., 1998) available as a module of the
Gifa program (Pons et al., 1996). While using this
program in our laboratory, we have found this tool to
be very useful in helping people who are new to the
assignment art. We also have found that the robust-
ness of the artificial neural network approach permits
the use of this tool in situations far from the learning
conditions.

Secondly, this tool can certainly be used in an
automatic assignment project by coupling its output
to some primary sequence analysis. However, this
approach would necessitate analysing, in some man-
ner, the NOESY spectra, in order to extract some
information on the preceding and following residues.

The approach presented here has been nick-
named RESCUE standing for RESidue prediCtion
with neUral nEtworks. It consists of a set of pro-
grams written in the perl and Matlab languages.
A CGI program implementing all the functions
presented here can be used from our web site
at: http://www.infobiosud.univ-montp1.fr/rescue. A
stand-alone version of RESCUE, written in perl, can
also be obtained from the web site or from the authors.

Conclusions

We have demonstrated here that for a protein or a
structured polypeptide, the values of the1H chem-
ical shifts contain some information on the type of
the amino acid. We have shown that under certain
conditions, this information can reliably be used to
characterize the amino acids under study. We have pre-
sented a set of programs called RESCUE, based on the
artificial neural network technology, that achieve this
determination with errors below 10% in certain cases.

Previous attempts to use artificial neural networks
to analyse chemical shift have been reported in the
literature for proteins (Hare and Prestegard, 1994;
Choy et al., 1997; Huang et al., 1997) or oligosac-
charides (Radomski et al., 1994). However, this study
presents a much higher prediction success. This can
be accounted for by the following specific features:
(i) the artificial neural network design has been aug-
mented by a fuzzy logic input layer which permits
to format adequately the values to be input into the
artificial neural network; (ii) training and test have
been realized on a large database of assigned chem-
ical shifts, issued from the BMRB; (iii) grouping of
amino acids inherently difficult to separate greatly im-
proves the efficiency of the approach while reducing
only marginally the use of this tool.

In this study, only1H chemical shifts were used as
we concentrated on data as would be detected from a
2D TOCSY. It is probable that adding to the input data
the15N or 13C chemical shifts would give some room
for prediction improvement. However, this improve-
ment can only be warranted if the training and test
databases are of sufficient size. The BMRB does not
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appear to meet this criterion fully at present. However,
this could change rapidly considering the increasing
rate of protein structure determination with the la-
belled protein technique; provided the authors deposit
their assignment information to the BMRB database.
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